
ADVANCED LIGHT SOURCE

High-Resolution Spectroscopy and Circular Polarization • Beamline 9.3.2

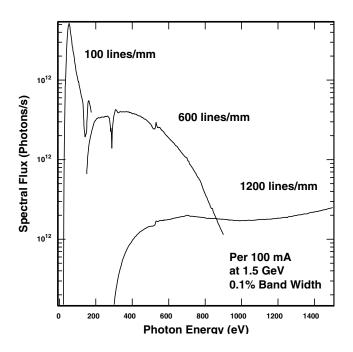
Berkeley Lab • University of California

Beamline S	pecifications				
Photon Energy Range (eV)	Photon Flux (photons/sec/0.1%BW)	Spectral Resolution (E/∆E)	Spot Size (mm)	Polarization	Availability
30-1500	~10¹¹ (dependent upon resolution & energy)	≤ 8000 (selectable by slit width)	0.5×1	Linear or Circular (selectable with aperture)	NOW

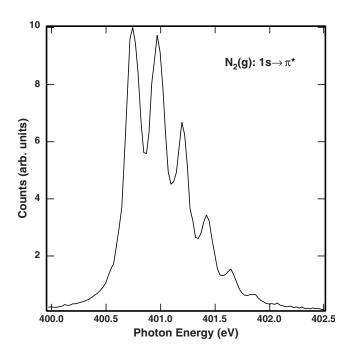
Schematic layout of Beamline 9.3.2.

B eamline 9.3.2 serves two experimental stations for high-resolution photoelectron and x-ray absorption spectroscopy of materials and surfaces with linearly and circularly polarized synchrotron radiation.

To share beamtime efficiently, the two stations are mounted on a platform that rotates without breaking vacuum, so that one station is in line to receive synchrotron light. The advanced photoelectron spectrometer/diffractometer (described in a separate data sheet) is permanently installed. The second station is removable. An applied materials chamber, an angle-resolved photoelectron spectroscopy chamber,


or an independent user chamber may be installed in this location.

The beamline operates over the energy range from 30 to 1400 eV using a bend-magnet source and a spherical-grating, Rowland-circle monochromator (SGM) with three interchangeable gratings and translatable entrance and exit slits. Horizontal and vertical focusing before the monochromator is by means of crossed mirrors in the Kirkpatrick-Baez configuration. The resolution of the monochromator is selectable by means of variable entrance- and exit-slit widths. Spectral resolutions up to 8,000 can be achieved with a flux around


 10^{12} photons/s for low photon energies (<200 eV), 10^{11} photons/s for intermediate energies, and 10^{10} photons/s for higher energies (>800 eV).

The polarization of the light is linear in the horizontal plane. A water-cooled, movable aperture

in front of the vertical focusing mirror selects part of the beam above or below the plane to obtain circularly polarized light (80% at 700 eV with a loss in intensity of only one-third to one-quarter).

Photon flux at a nominal resolving power of 1,000. Three gratings with line densities of 100, 600, and 1200 lines/mm are used in the monochromator. The curves show the photon spectral flux for each grating at a resolving power of 1,000 over its full range, as measured with a gold photodiode downstream from the monochromator exit slit. Flux measurements were made at a beam energy of 1.5 GeV; flux values are normalized to a beam current of 100 mA. The failure of the flux from the high-energy grating to drop off may indicate a large scattered light component.

Near-edge absorption spectrum (NEXAFS). Nitrogen K-edge gas-phase N_2 photoabsorption spectra showing the $1s \to \pi^*$ region corresponding to a monochromator resolving power ($E/\Delta E$) in excess of 7000. Data courtesy of Z. Hussain, P.A. Heimann, W. McKinney, and H.A. Padmore (ALS); W.R.A. Huff, S.A. Kellar, and E.J. Moler (ALS and University of California at Berkeley); C.S. Fadley (University of California at Davis and LBNL); and D.A. Shirley (The Pennsylvania State University) [J. Electron Spectroscopy 80, 401 (1996)].

To obtain a proposal form, go to www-als.lbl.gov/als/quickguide/independinvest.html.

For Beamline Information

Bongjin Simon Mun Materials Sciences Division Berkeley Lab, MS 2R0100 Berkeley, CA 94720 Tel: (510) 486-4864

Tel: (510) 486-4864 Fax: (510) 486-5530 Email: bsmun@lbl.gov

